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A mathematical proof that there are no stationary solutions of the soliton type is given for a number of 

equations related to Ostrovskii’s equation which, in particular, describes the surface and internal waves in a 

rotating fluid. A physical interpretation of this fact is presented. It is shown that, in the case of a different 

character of the high frequency dispersion which corresponds, for example, to capillary waves on a shallow 

rotating fluid, the conditions of the theorem are not satisfied as a result of which the prohibition on the 

existence of sohtons is lifted. In this case, both single solitons as well as stationary formations consisting of 

solitons, that is, multisolitons, are constructed using numerical calculations. 

1. FORMULATION OF THE PROBLEM 

CONSIDER the class of non-linear wave equations of the form 

(1.1) 

Here, q(x, t) is an unknown function, c, a, p, y and p are constants and p > 1. Equations belonging to this 
family are generated on the one hand by the generalised Korteweg-de Vries (KdV) equations and pass into 
them when y = 0 and, on the other hand, their structure is close to the structure of the Kadomtsev-Petviashvili 
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(KP) equation. An equation belonging to the class (1.1) under consideration with p = 2 was derived for the first 
time by Ostrovskii [l] in order to describe internal waves in the ocean. Subsequently, analogous equations were 
obtained by many others for different types of waves (see the review [2] and the references contained therein). 

The similarity between the generalized equation (1.1) and the classical KdV and KP equations, the 
distinctive feature of which is the occurrence of soliton solutions (by solitons, we mean solitary stationary waves 
without dwelling on questions of their stability, evolutionary character, etc.) also enables one to postulate the 
possibility of the existence of similar solutions within the framework of Eq. (1.1). It is found, however, that, in 
spite of the relative simplicity of this equation, it has not been possible up to now to give a complete description 
of its stationary solutions (the individual classes of such solutions, constructed using a digital computer, are 
given in [2]). An attempt was made in [3] to prove the fact that Eq. (l.l), whenp = 2 and when the parameters 
p and y have the same signs, does not possess soliton solutions. However, this proof, which is unnecessarily 
complex, contains a number of doubtful assertions, although it leads to the true result. 

Below, we will put forward an extremely simple and rigorous proof of the absence of soliton solutions when 
By>0 not only strictly for the Ostrovskii equation but also in the case of its generalizations with an arbitrary 
value of p as well as for a number of other related equations (see [4,5]). 

We note that certain equations of this class have a direct relation to physical systems. In particular, when 
p = 3, Eq. (1.1) describes the propagation of internal waves of even modes, which possess a cubic 
non-linearity, in the ocean. 

2. THE “ANTISOLITON” THEOREM 

By considering the stationary solutions of Eq. (1.1) which depend on a single variable 5 = x - Vf, we can 

rewrite it in the form of the system [3] 

ua = -up-W + au + bv, v” = u (2.1) 

v-c Y 
a = 7’ b =B’ 

if p is even sign:&), ifp is odd 

(the primes denote differentiation with respect to 5). Next, we are interested in the soliton solutions of system 
(2.1) for which the function u(t)+0 when I< 1 + m together with its derivatives. 

Let us prove that such solutions do not exist for a positive value of the parameter b. First of all, we note that 
system (2.1) possesses the integral 

Ha = ‘/, [(u’)s + b (v’)z] + up-1 (p + i)-‘UP+’ - 1/,a~2 - buv (2.2) 

In a soliton solution far from its vertex which, to be specific, we shall put at the origin of coordinates, system 
(2.1) can be linearized by neglecting the term ---up. A simple characteristic equation for solutions which are 

proportional to fA5 follows from the linear system which is obtained in this manner 

h4 - aV - b = 0 (2.3) 

It can be shown that, for any sign of a and when b > 0, it always has a pair of purely imaginary roots and a pair 
of real roots which are equal in modulus and opposite in sign. No further consideration will be given to the 
imaginary roots or to the localized solutions corresponding to them. In principle, the real roots could 
correspond to the asymptotic forms of the soliton solutions. Let us denote the real positive root by 

A, = [a/2 + g(a2/4 + b)]“’ and write the asymptotic forms of a possible soliton solution as 

u (E) - 
1 

A exp (G), when 6w-m 

B exp (-A&), when 5 * 33 

Let us next assume that the coefficient A > 0 (<O). Then, u (5) > 0 (CO) also when e+ - 00. The fact that the 
second derivative of v vanishes at just a single point follows from the condition v’ (+ M) = 0 and Roll’s theorem. 
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FIG. 1. 

We select the smallest value of & for which the equality ~“(5~) = 0 is satisfied. Then, in the interval (--00, .$i ). 
we will have u(t)>0 (<0) and, also, u(&) = 0 at the point & by virtue of the second equation of system (2.1). 
Returning to the integral (2.2), it may be concluded that H = 0 in a soliton solution. However, we then have 
that ~‘(6~) = v’(&) = 0 at the point .$i. It is now possible to make use of Roll’s theorem again and it follows 
from this that v” = 0 at just the single point szE (-00, ti). H owever, this contradicts the assumption that 5, is 
the smallest value for which v” = 0. It follows from this that the assumption that a soliton solution exists with 
zero asymptotic forms at infinity is untrue. 

3. SOLITON SOLUTIONS OF OSTROVSKII’S EQUATION WHEN b<O 

The proof of the “antisoliton” theorem which has been presented in Sec. 2 is based essentially on the 
positiveness of the coefficient b and it no longer holds good when b<O. In the latter case, the search for 
stationary solutions of Ostrovskii’s equation (with p = 2, u = 75 and b = 1200) using a digital computer and 
Petviashvili’s method [6] leads to a soliton solution, the structure of which is represented by the solid line in 
Fig. 1. Here, on account of the presence of local extrema outside the vertex of the soliton, the formation of 
bound states consisting of two or more solitons, that is, multisoliton solutions, is possible. The stationary 
solution of Ostrovskii’s equation for the same values of the parameters is shown in the form of a bisoliton by the 
dashed line. 

We will now give a physical interpretation of the possibility of the existence of soliton solutions within the 
framework of Eq. (1.1). By linearizing (1.1) and seeking solutions of the resulting linear equation in the form 
q - exp (iot - Lb), we find the corresponding dispersion relationship for waves of infinitely small amplitude 

An expression follows from this for the phase velocity o/k. A plot of its dependence on k for different signs of 
l3 and y>O is shown in Fig. 2. It is seen that, when p >O, linear perturbations can exist over the whole range of 

FIG. 2. 
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phase velocities from - 00 to + CC. As a consequence of this, an object moving with an arbitrary velocity in such 
a medium will inevitably be in resonance with some linear wave or other which leads to its excitation. Hence, a 
localized perturbation during the motion will experience radiative decay and this means that it will not be 
stationary. 

However, these arguments cannot be considered as being completely rigorous or the generation of linear 
perturbations would now also depend on the structure of the moving source. In particular, soliton solutions 
with a complex internal structure are possible in certain cases when there is a resonance with linear 
perturbations [7, 81. In the case of such solitons just a simultaneous generation and absorption of the excited 
waves in the internal domain would occur during the motion. Solutions of this kind usually form a finite or 
denumerable set and are unstable to small perturbations. 

We also note that, when there is resonance, solutions are possibl- c which represent solitons moving in a 
stationary manner against a background of periodic waves. The total energy of such perturbations is infinite 
and they are not considered here. 

If, however, i3 < 0, linear perturbations can only exist within a semibounded range of phase velocities when 
w/k >c. The possibility of solitons which are not in resonance with linear perturbations and are not subject to 
radiative decay then arises. 

The parameter y>O [l-3] in the case of waves in a rotating fluid. Furthermore, in the case of surface 
gravitational and internal waves in the ocean, p>O [l-3] and solitons are therefore impossible in the case of 
such waves. The parameter p can be negative in the case of capillary waves on the surface of a shallow rotating 
fluid or in the case of rapid magnetosonic waves in a rotating magnetized plasma [2]. The existence of not only 
one-dimensional but also two-dimensional multisolitons is possible in the case of such waves. 

4. THE “ANTISOLITON” THEOREM FOR SHRIRA’S EQUATION 

The somewhat more-general equation [4,5] 

Utt - C%lZr + P’v - 3 pvttxx = [up, (0 + u,)-llt + -+ 8 RvtY (Q + vJ21x 

is also considered together with Ostovskii’s equation in the theory of linear waves in a rotating fluid. 
In the case of stationary waves, this equation takes the form 

[Qw”’ - Pw’ + (3/2 + w’) (w’)s (1 + w’)-~!’ = Rw 

w = vll;z, Q = $13, P = 1 - S/V=, R = ‘da/v2 

where, as previously, a prime denotes differentiation with respect to .$ = x - I/t. 

This equation possesses a first integral: 

(4.1) 

(4.2) 

R” = 1/24-l {Ru+ + Q (w”)* - 2Qw’w.’ + (lo’)* [(i + w’)-* + P - I]} (4.3) 

First of all, we note that, as follows directly from Eq. (4.2), it cannot have solutions of a shock-wave type 
(kinks). Actually, the left-hand side of this equation (and this means w also) vanishes when 15 I--+ CC for such 
solutions. Let us now prove that, when RQ>O, there also cannot be smooth soliton solutions of the pulse type 
with null asymptotic forms at infinity. In fact, as can be seen from (4.3), Ho = 0 for such solutions. If it is 
assumed that a smooth soliton solution exists, then the equality w’ = 0 must be satisfied at the points of an 
extremum but we then get from (4.3) that Rw*+ Q(w”)* = 0 at the above-mentioned points. In other words, 
the solution must be trivial: w (5) = 0. 

The physical treatment of the absence of solitons in the case of Eq. (4.2) with RQ > 0 is again a consequence 

of the fact that, within the framework of Eq. (4.1), linear perturbations can have any phase velocity in a range 
from --oo to +a. 
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5. CONCLUSION 

Apart from the equations which have been considered here, there are other related equations which possess 
similar properties for which the presence or absence of soliton solutions is determined by the ratio of the 
coefficients characterizing the low- and high-frequency dispersion. A rigorous mathematical proof of the 
“antisoliton” theorem cannot be given for all of these equations. However, the physical considerations 
presented in Sec. 3 are usually also applicable to these equations. As an example, let us consider the equation 
which describes the non-linear internal waves in a deep rotating ocean [9] 

(5.1) 

(the integral is to be understood in the sense of a prizipal values). 
When searching for stationary solutions, it is convenient to represent this equation in the form of a system 

analogous to (2.1): 
1 

(Ku)’ = - 2 u’ + au + bv, v* = u 

u = aq/8, a = (V - c)/b, b = y/a (5.2) 

(the prime denotes differentiation with respect to 5 = x - Vt). In the case of (5.2), the first integral is 

(5.3) 

However, it is not possible to use this integral to prove the absence of soliton solutions in the case of system 
(5.2) in the spirit of what was done in Sec. 2 on account of the fact that the first integral term on the right-hand 
side of (5.3) is undetermined with respect to its sign. Physical considerations based on an analysis of the form of 
the dispersion curve o = ck + ylk - Skz suggest that, when b < $8 >O (a situation characteristic of internal 
oceanic waves) there must also not be any soliton solutions. 

1. 
2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

REFERENCES 

OSTROVSKII L. A., Non-linear internal waves in a rotating ocean. Okeanofogiya l&2, 181-191, 1978. 
OSTROVSKII L. A. and STEPANYANTS Yu. A., Non-linear surface and internal waves in a rotating fluid. In 
Non-Linear Waves. Nauka, Moscow, 1991. 
LEONOV A. I., The effect of Earth rotation on the propagation of weak nonlinear surface and internal long oceanic 
waves. Annals New York Acad. Sci. 373, 15&159,1981. 
SHRIRA V. I., Propagation of long non-linear waves in a layer of a rotating fluid. IN. Akad. Nauk SSSR, Fiz. Atmosfery 
i Okeuna 17, 1,76-81,1981. 
SHRIRA V. I., On long essentially non-linear waves in a rotating ocean. IN. Akad. Nauk SSSR, Fiz. Atmosfery i Okeana 
22,4,395-405,1986. 
PETVIASHVILI V. I. and POKHOTELOV 0. A., Solitary Waves in a Plasma and in the Atmosphere. Energoatomizdat, 
Moscow, 1989. 
KOZLOV V. A., LITVAK A. G. and SUVOROV E. V., Solitons of envelopes of strong relativistic electromagnetic 
waves. Zh. Eksp. Tear. Fiz. 76, 1, 148-157, 1979. 
BOGOMOLOV Ya. L., KOL’CHUGINA I. A., LITVAK A. G. and SERGEYEV A. M., Near-sonic Langmuir 
solitons. Phys. Lett. 94A, 9,447450, 1982. 
GRIMSHAW R., Evolution equations for weakly nonlinear long internal waves in a rotating fluid. Stud. Appl. Math. 73, 
l-33, 1985. 

Translated by E.L.S. 


